Featured no image

Published on June 30th, 2022 📆 | 5555 Views ⚑

0

Technology assessment of solar disinfection for drinking water treatment


iSpeech.org

  • Sustainable Development Goal 6: Synthesis Report 2018 on Water and Sanitation (United Nations, 2018).

  • The Millennium Development Goals Report 2015 (United Nations, 2015).

  • Progress on Household Drinking Water, Sanitation and Hygiene 2000–2017: Special Focus on Inequalities (UNICEF and WHO, 2019).

  • Global Health Observatory Data Repository (WHO, accessed 9 June 2022); https://www.who.int

  • Montgomery, M. A. & Elimelech, M. Water and sanitation in developing countries: including health in the equation. Environ. Sci. Technol. 41, 17–24 (2007).

    Article 

    Google Scholar
     

  • Combating Waterborne Disease at the Houshold Level (WHO, 2007).

  • Results of Round II of the WHO International Scheme to Evaluate Household Water Treatment Technologies (WHO, 2019).

  • Chu, C., Ryberg, E. C., Loeb, S. K., Suh, M.-J. & Kim, J.-H. Water disinfection in rural areas demands unconventional solar technologies. Acc. Chem. Res. 52, 1187–1195 (2019).

    CAS 
    Article 

    Google Scholar
     

  • McGuigan, K. G. et al. Solar water disinfection (SODIS): a review from bench-top to roof-top. J. Hazard. Mater. 235, 29–46 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Fisher, M. B., Keenan, C. R., Nelson, K. L. & Voelker, B. M. Speeding up solar disinfection (SODIS): effects of hydrogen peroxide, temperature, pH, and copper plus ascorbate on the photoinactivation of E. coli. J. Water Health 6, 35–51 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Shannon, M. A. et al. In Nanoscience and Technology: A Collection of Reviews from Nature Journals (ed. Rodgers, P.) 337–346 (World Scientific, 2010).

  • Loeb, S., Li, C. & Kim, J.-H. Solar photothermal disinfection using broadband-light absorbing gold nanoparticles and carbon black. Environ. Sci. Technol. 52, 205–213 (2018).

    CAS 
    Article 

    Google Scholar
     

  • Loeb, S. K. et al. Nanoparticle enhanced interfacial solar photothermal water disinfection demonstrated in 3-D printed flow-through reactors. Environ. Sci. Technol. 53, 7621–7631 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Wigginton, K. R. & Kohn, T. Virus disinfection mechanisms: the role of virus composition, structure, and function. Curr. Opin. Virol. 2, 84–89 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Fraise, A. P., Lambert, P. A. & Maillard, J.-Y. Russell, Hugo & Ayliffe’s Principles and Practice of Disinfection, Preservation and Sterilization (Wiley & Sons, 2008).

  • McDonnell, G. E. Antisepsis, Disinfection, and Sterilization: Types, Action, and Resistance (Wiley & Sons, 2020).

  • Burch, J. D. & Thomas, K. E. Water disinfection for developing countries and potential for solar thermal pasteurization. Sol. Energy 64, 87–97 (1998).

    Article 

    Google Scholar
     

  • Sampathkumar, K., Arjunan, T., Pitchandi, P. & Senthilkumar, P. Active solar distillation—a detailed review. Renew. Sustain. Energy Rev. 14, 1503–1526 (2010).

    CAS 
    Article 

    Google Scholar
     

  • Wang, Z. et al. Pathways and challenges for efficient solar-thermal desalination. Sci. Adv. 5.7, aax0763 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Pang, Y. et al. Solar-thermal water evaporation: a review. ACS Energy Lett. 5, 437–456 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Results of Round I of the WHO International Scheme to Evaluate Household Water Treatment Technologies (WHO, 2016).

  • Velmurugan, V., Gopalakrishnan, M., Raghu, R. & Srithar, K. Single basin solar still with fin for enhancing productivity. Energy Convers. Manage. 49, 2602–2608 (2008).

    Article 

    Google Scholar
     

  • Badran, O. O. & Abu-Khader, M. M. Evaluating thermal performance of a single slope solar still. Heat Mass Transf. 43, 985–995 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Luzi, S., Tobler, M., Suter, F. & Meierhofer, R. SODIS Manual: Guidance on Solar Water Disinfection (Eawag, 2016).

  • Loeb, S. K. et al. The technology horizon for photocatalytic water treatment: sunrise or sunset? Environ. Sci. Technol. 53, 2937–2947 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Hirayama, H., Tsukada, Y., Maeda, T. & Kamata, N. Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer. Appl. Phys. Express 3, 031002 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Shur, M. S. & Gaska, R. Deep-ultraviolet light-emitting diodes. IEEE Trans. Electron Devices 57, 12–25 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Khan, A., Balakrishnan, K. & Katona, T. Ultraviolet light-emitting diodes based on group three nitrides. Nat. Photonics 2, 77–84 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Zhang, X. et al. Global sensitivity analysis of environmental, water quality, photoreactivity, and engineering design parameters in sunlight inactivation of viruses. Environ. Sci. Technol. 54, 8401–8410 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Haag, W. R. & Yao, C. D. Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ. Sci. Technol. 26, 1005–1013 (1992).

    CAS 
    Article 

    Google Scholar
     

  • Brown, J. & Clasen, T. High adherence is necessary to realize health gains from water quality interventions. PLoS ONE 7, e36735 (2012).

    CAS 
    Article 

    Google Scholar
     

  • Trimmer, J. T. et al. Re-envisioning sanitation as a human-derived resource system. Environ. Sci. Technol. 54, 10446–10459 (2020).

    CAS 
    Article 

    Google Scholar
     

  • UN-Water Global Analysis and Assessment of Sanitation and Drinking-Water (GLAAS) 2019 Report: National Systems to Support Drinking-Water, Sanitation and Hygiene: Global Status Report 2019 (WHO, 2019).

  • The United Nations World Water Development Report 2019: Leaving No One Behind (United Nations Educational, Scientific and Cultural Organization, 2019).

  • Enger, K. S., Nelson, K. L., Rose, J. B. & Eisenberg, J. N. The joint effects of efficacy and compliance: a study of household water treatment effectiveness against childhood diarrhea. Water Res. 47, 1181–1190 (2013).

    CAS 
    Article 

    Google Scholar
     

  • Hijnen, W., Beerendonk, E. & Medema, G. J. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review. Water Res. 40, 3–22 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Evaluating Household Water Treatment Options: Health-Based Targets and Microbiological Performance Specifications (WHO, 2011).

  • Kohn, T. & Nelson, K. L. Sunlight-mediated inactivation of MS2 coliphage via exogenous singlet oxygen produced by sensitizers in natural waters. Environ. Sci. Technol. 41, 192–197 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Guidelines for Drinking-Water Quality 4th edn (WHO, 2011).





  • National Primary Drinking Water Regulations: Long Term 2 Enhanced Surface Water Treatment Rule; Final Rule (US EPA, 2006).

  • Loeb, S., Hofmann, R. & Kim, J.-H. Beyond the pipeline: assessing the efficiency limits of advanced technologies for solar water disinfection. Environ. Sci. Technol. Lett. 3, 73–80 (2016).

    CAS 
    Article 

    Google Scholar
     

  • Liu, B., Zhao, X., Terashima, C., Fujishima, A. & Nakata, K. Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems. Phys. Chem. Chem. Phys. 16, 8751–8760 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Malato, S., FernĂĄndez-Ibåñez, P., Maldonado, M. I., Blanco, J. & Gernjak, W. Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal. Today 147, 1–59 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Cho, M., Chung, H., Choi, W. & Yoon, J. Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Res. 38, 1069–1077 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Cho, M., Cates, E. L. & Kim, J.-H. Inactivation and surface interactions of MS-2 bacteriophage in a TiO2 photoelectrocatalytic reactor. Water Res. 45, 2104–2110 (2011).

    CAS 
    Article 

    Google Scholar
     

  • Park, G. W. et al. Fluorinated TiO2 as an ambient light-activated virucidal surface coating material for the control of human norovirus. J. Photochem. Photobiol. B 140, 315–320 (2014).

    CAS 
    Article 

    Google Scholar
     

  • Nelson, K. L. et al. Sunlight-mediated inactivation of health-relevant microorganisms in water: a review of mechanisms and modeling approaches. Environ. Sci. Process. Impacts 20, 1089–1122 (2018).

    CAS 
    Article 

    Google Scholar
     

  • DeRosa, M. C. & Crutchley, R. J. Photosensitized singlet oxygen and its applications. Coord. Chem. Rev. 233–234, 351–371 (2002).

    Article 

    Google Scholar
     

  • Dobrowsky, P. et al. Efficiency of microfiltration systems for the removal of bacterial and viral contaminants from surface and rainwater. Water Air Soil Pollut. 226, 33 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Dobrowsky, P., Carstens, M., De Villiers, J., Cloete, T. & Khan, W. Efficiency of a closed-coupled solar pasteurization system in treating roof harvested rainwater. Sci. Total Environ. 536, 206–214 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Abraham, J., Plourde, B. & Minkowycz, W. Continuous flow solar thermal pasteurization of drinking water: methods, devices, microbiology, and analysis. Renew. Energy 81, 795–803 (2015).

    Article 

    Google Scholar
     

  • Spinks, A. T., Dunstan, R., Harrison, T., Coombes, P. & Kuczera, G. Thermal inactivation of water-borne pathogenic and indicator bacteria at sub-boiling temperatures. Water Res. 40, 1326–1332 (2006).

    CAS 
    Article 

    Google Scholar
     

  • Sanciolo, P. et al. Pasteurisation for Production of Class A Recycled Water: A Report of a Study Funded by the Australian Water Recycling Centre of Excellence Report No. 1922202665 (Australian Water Recycling Centre of Excellence, 2015).

  • Parry, J. & Mortimer, P. The heat sensitivity of hepatitis A virus determined by a simple tissue culture method. J. Med. Virol. 14, 277–283 (1984).

    CAS 
    Article 

    Google Scholar
     

  • Hewitt, J., Rivera‐Aban, M. & Greening, G. Evaluation of murine norovirus as a surrogate for human norovirus and hepatitis A virus in heat inactivation studies. J. Appl. Microbiol. 107, 65–71 (2009).

    CAS 
    Article 

    Google Scholar
     

  • Maheshwari, G., Jannat, R., McCormick, L. & Hsu, D. Thermal inactivation of adenovirus type 5. J. Virol. Methods 118, 141–146 (2004).

    CAS 
    Article 

    Google Scholar
     

  • Strazynski, M., KrĂ€mer, J. & Becker, B. Thermal inactivation of poliovirus type 1 in water, milk and yoghurt. Int. J. Food Microbiol. 74, 73–78 (2002).

    Article 

    Google Scholar
     

  • Fujino, T. et al. The effect of heating against Cryptosporidium oocysts. J. Vet. Med. Sci. 64, 199–200 (2002).

    Article 

    Google Scholar
     

  • Fayer, R. Effect of high temperature on infectivity of Cryptosporidium parvum oocysts in water. Appl. Environ. Microbiol. 60, 2732–2735 (1994).

    CAS 
    Article 

    Google Scholar
     

  • Harp, J. A., Fayer, R., Pesch, B. A. & Jackson, G. J. Effect of pasteurization on infectivity of Cryptosporidium parvum oocysts in water and milk. Appl. Environ. Microbiol. 62, 2866–2868 (1996).

    CAS 
    Article 

    Google Scholar
     

  • Jarroll, E. L., Hoff, J. C. & Meyer, E. A. in Giardia and Giardiasis (eds Erlandsen, S. L. & Meyer, E. A.) 311–328 (Springer, 1984).

  • Ongerth, J. E., Johnson, R. L., MacDonald, S. C., Frost, F. & Stibbs, H. H. Back-country water treatment to prevent giardiasis. Am. J. Public Health 79, 1633–1637 (1989).

    CAS 
    Article 

    Google Scholar
     

  • Schaefer, F. W., Rice, E. W. & Hoff, J. C. Factors promoting in vitro excystation of Giardia muris cysts. Trans. R. Soc. Trop. Med. Hyg. 78, 795–800 (1984).

    Article 

    Google Scholar
     

  • Global Solar Atlas 2.0 (World Bank Group, 2020); https://globalsolaratlas.info/

  • R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2021).

  • Campolongo, F., Cariboni, J. & Saltelli, A. An effective screening design for sensitivity analysis of large models. Environ. Model. Softw. 22, 1509–1518 (2007).

    Article 

    Google Scholar
     

  • Saltelli, A. Sensitivity analysis for importance assessment. Risk Anal. 22, 579–590 (2002).

    Article 

    Google Scholar
     

  • Sobol, I. M. Sensitivity analysis for non-linear mathematical models. Math. Modell. Comput. Exp. 1, 407–414 (1993).


    Google Scholar
     

  • Saltelli, A., Tarantola, S., Campolongo, F. & Ratto, M. Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models Vol. 1 (Wiley Online Library, 2004).

  • Zhang, T. et al. A global perspective on renewable energy resources: NASA’s prediction of worldwide energy resources (power) project. In Proc. ISES World Congress 2007 Vol. 1–Vol. 5 (eds Goswami, D. Y. & Zhao, Y.) 2636–2640 (Springer, 2009).

  • Stackhouse, P. Jr. et al. Surface Meteorology and Solar Energy (SSE) Release 6.0 Methodology version 3.2.0 (NASA, 2016).

  • Stackhouse, P. Jr. et al. Supporting energy-related societal applications using NASA’s satellite and modeling data. In Proc. 2006 IEEE International Symposium on Geoscience and Remote Sensing (ed. Tsang, L.) 425–428 (IEEE, 2006).

  • World Development Indicators (World Bank, accessed 9 June 2022); https://datacatalog.worldbank.org/dataset/world-development-indicators

  • Haitz, R. H., Craford, M. G. & Weissman, R. H. In Handbook of optics Vol. 2 (ed. Bass, M.) 121–129 (Optical Society of America, 1995).

  • GarcĂ­a-Gil, Á., Abeledo-Lameiro, M. J., GĂłmez-Couso, H. & MarugĂĄn, J. Kinetic modeling of the synergistic thermal and spectral actions on the inactivation of Cryptosporidium parvum in water by sunlight. Water Res. 185, 116226 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Source link

    Tagged with: ‱ ‱ ‱ ‱ ‱ ‱



    Comments are closed.