Pentest Tools

Published on March 1st, 2016 📆 | 3870 Views ⚑


OpenFace — Free Open Source Face Recognition Neural Network

Powered by iSpeech

OpenFace is a Python and Torch implementation of face recognition with deep neural networks and is based on the CVPR 2015 paper FaceNet: A Unified Embedding for Face Recognition and Clustering by Florian Schroff, Dmitry Kalenichenko, and James Philbin at Google. Torch allows the network to be executed on a CPU or with CUDA.  OpenFace is the improved neural network training techniques that causes an accuracy improvement from 76.1% to 92.9%.

This research was supported by the National Science Foundation (NSF) under grant number CNS-1518865. Additional support was provided by the Intel Corporation, Google, Vodafone, NVIDIA, and the Conklin Kistler family fund. Any opinions, findings, conclusions or recommendations expressed in this material are those of the authors and should not be attributed to their employers or funding sources.

[adsense size='1']

Free Open Source Face Recognition Neural Network

The following overview shows the workflow for a single input image of Sylvestor Stallone from the publicly available LFW dataset.

  1. Detect faces with a pre-trained models from dlib or OpenCV.
  2. Transform the face for the neural network. This repository uses dlib’s real-time pose estimation with OpenCV’s affine transformation to try to make the eyes and bottom lip appear in the same location on each image.
  3. Use a deep neural network to represent (or embed) the face on a 128-dimensional unit hypersphere. The embedding is a generic representation for anybody’s face. Unlike other face representations, this embedding has the nice property that a larger distance between two face embeddings means that the faces are likely not of the same person. This property makes clustering, similarity detection, and classification tasks easier than other face recognition techniques where the Euclidean distance between features is not meaningful.
  4. Apply your favorite clustering or classification techniques to the features to complete your recognition task. See below for our examples for classification and similarity detection, including an online web demo.



What’s in the repository?


[adsense size='4']

Source && Download

Leave a Reply

Your email address will not be published.